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Statistics of wave functions in coupled chaotic systems
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Using the supersymmetry technique, we calculate the joint distribution of local densities of electron wave
functions in two coupled disordered or chaotic quantum billiards. We find spatial correlations that are absent in
a single chaotic system. Our exact result can be interpreted for small coupling in terms of the hybridization of
eigenstates of the isolated billiards. We show that the presented picture is universal, independent of micro-
scopic details of the coupling.

PACS numbes): 05.45.Mt, 73.23-b, 73.20.Dx

In disordered or chaotic systems, the dynamics is in gen- The probability for the local density|¢,(x)|? of a state
eral too complex to find exact eigenstates for a given disorwith wave functiong,(x) and energy, as well as its spa-
der or boundary configuration. Therefore, one is interested itial correlations can be described by the joint distribution
statistical properties of physical quantities like wave func-function (JDF f,(p;,p,), defined as
tions, energy levels, etc. The complete information about
these quantities can be ex.tracted from distribution fuqctions fo(PysPa) = AE S(e—e,) H 8(pi—V| b, (x)|?) ),
that can be calculated either numerically or analytically. o i=12
Various methods of studying the statistics have been devel- (1)

oped recently and this offers the possibility to achieve a good

understanding of many disordered and ballistic chaotic sys/Nere the brackets.-) denote disorder averaging
=(vV) " is the mean level spaciny, is the volume of the

tems(for a recent review see, e.§1-5)). . )

Now it is well established that under very general condi-t_Otal system, af"* is the average density of states. Th? func-
tions the statistics of chaotic systems is universal and weiffo" f2(p1,po) is the probability that' the local densities at
described by random matrix theofRMT) or the zero- energye are equal tp, andp at pointsx, andxs, corre-
dimensional version of the supermatrix model. For the sptl)fnglnglr)]/dp are not very large, the statistics of the wave

. . . . . . 1 2 1
distribution function of the amplitudes of wave functions, functions is universal and does not depend on whether the

one obtalns ywthm this appro.mm'auon the famqus I?Or?er'chaotic motion is due to disorder or a nonintegrable shape of
Thomas distributior6], which is simply a Gaussian distri-

the billiard. The direct calculation using the supersymmetry

bution of the amplitudes. Then, fluctuations of the wavechnique or RMT gives, for single billiards in the unitary
functions at different points are statistically independent.  55e:

In this paper, we present results from studying statistical
properties of wave functions of two coupled chaotic systems. fo(p1,po)=exp(—p)exp—p,), 2
To be more specific, we consider two quantum chaatic bil-
liards coupled in such a way that electroios electromag-  Which is just the Porter-Thomas distributigd]. Proper for-
netic wave$ can penetrate from one billiard into the other. Mulas can be written for the other ensembles but we concen-
Studying such types of models is definitely interesting, beirateé here on studying a chaotic system with broken time

cause they can be relevant for double quantum dot systen‘i@versal symmetry. This case is most simple for calculations

recently fabricated on the basis of a two-dimensional elecPUt the interesting effects obtained below are general. The

tron gas and investigated experimentdl]. One can also unitary ensemble is easily realized in quantum dots by ap-

imagine that in the near future, microwave experiments orp!Ying & magnetic field. As concerns microwave cavities,
double billiards will be performed. However, the importance ime-réversal invariance can be broken by a special prepara-

of studying coupled chaotic systems is much more generdion Of the cavity wallg8]. _

and results obtained can be relevant, e.g., for systems of 1he functionfy(py,py), Eq. (1), characterizes correla-
weakly coupled complex atoms and molecules. To the pedions of the am'plltudes of the electromagnetic waves in mi-
of our knowledge, neither numerical nor analytical resultsCrowave experiments and can be measured dirg6ilyAt

from a study of wave functions of coupled chaotic systeméhe same time, this function determines the statistics of the
exist in the literature. conductance peak heigh@G,,,, in quantum dots in the re-

Wave functions are the most interesting objects indime of Coulomb blockade. The conductar®g., can be
coupled systems, because even at very small coupling thé?(pressed throuzgh the tunnel rates of the contacts to external
can drastically change if any two levels of the correspondind€@dsl’i<| #(x))|* [10,11:
isolated systems are close to each other. Statistics of such e T.T
hybridized wave functions can be quite unusual, but, at the . XM—L_
same time, possess interesting universal features. T T+T,
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Starting with the Hamiltonian, Eq$5)—(8), we perform
calculations using the supersymmetry technifjlie Follow-
ing this method, the JDF can be written in a form given by
an integral over supermatric€¥; ,Q, [14]:

1
FIG. 1. Two quantum billiards are coupled along some extended  f,(p,,p,)= lim % 4§J dtdQ,dQ,

tunneling surface&

Equation(3) is valid for I';)<T<A, whereT is temperature
and A is the mean level spacing in a single dot. Then we
have for the distribution functioRP(g) of the dimensionless
conductancg=T/(I'€?) G pax:

1P2
P1t+pP2

fa(p1,P2)- (4)

P(g)=f dpldpzé(g—

6—1 0

y—0

X 0

yto
P+ ESU(Hale)

_y(1-1s

X 8| pa TStr(Herz))C[Qi]

X exp(—F[Q]). 9

The relevance of Eq(Z) for conductance fluctuations in The free energfF =Fy+F+ contains the free pak, for the

single dots has been confirmed in experimdi®. Unfor-
tunately, conductance fluctuations were not studied in an ex-
periment on double quantum dqdfg]. In a recent theoretical

work [13], the averaged resonance conductance and its fluc-
tuations have been considered for two coupled dots in the
limit of weak coupling based on the assumption that wave

single dots:

A ISAQ)),

R

functions of the corresponding isolated dots are Porteryg the ternF describing the coupling between them:

Thomas distributed even near the point contact. In contrast,
we present a general microscopic derivation of the function
fo(p1,P2), EQ. (1), for two coupled quantum chaotic bil-
liards for arbitrary coupling. We find universal correlations
that do not exist in a single billiard.

Fr=—4StQ1Q,). (11

The system we consider is represented in Fig. 1. Therhe functionc[Q;] in Eq. (9) is

HamiltonianH can be written as
H:H1+H2+HT, (5)

whereH; andH, correspond to the isolated dots:

Hi= X e.ciicl. (6)

“ (23
ai=1,2

In Eq. (6), eia are the single particle energies of dpandc’

CLQi]=St (4 —IT)(D1Q1+D2Q5) |,

Aj=(vV;) "1 is the mean level spacing in diD;=A/A;,
andA " 1=p(V,+V,). The projectordl;; select certain ele-
ments of the supermatrice;,A=diag{1,1,1,1;-1,—1,
—1,—1}, Stris the supertracor more details of the nota-
tions sed1]).

The parameters A2~ 1S|ty|?(A;A,) 1 is the dimension-

and c are creation and annihilation operators. We want tdess coupling constant, witkg being the Fermi wavelength.

emphasize that the billiards are not identical and can hav

fh F1 we have kept only the term of lowest orderdn Other

arbitrary shapes and configurations of disorder. The couplingerms of ordera” are smaller by a factor a"(A¢~%/S)" 1

Ht that can be written as
Hr=2>) tusciici+c.c. 7
B

Assuming that the particles tunnel through a surf&dee-
tween the two dots, the tunneling matrix eleméegy takes
the form

tas=to f Sd"*lxwlvzcbi*(xwz(x). ®)

In Eq. (8) we integrate over the surfa&V; is the volume of
doti,tg is the tunneling rate per unit surface, amj(x) is

the single particle wave function of stadeat a pointx of the

tunnel contact in dot.

dots. Therefore, as long agl~*/S<1, we can consider not
only small couplings but alsa=1. On the other hand, ne-
glecting higher-order terms for point contacts is correct only
for a<1. Note, that in the limitoe— o, fluctuations of
—Q,) are suppressed and one comes to the model for a
single dot with volumeV=V;+V,. The opposite limit,«

—0, can only be performed after taking—0.

To perform the integration we use the standard parametri-
zation [1]. All manipulations are not very difficult for the
unitary ensemble. After a rotation @, only one set of
Grassmann variables remains in the exponent, which is con-
venient for integrating out the Grassmann variables. Due to
the presence of the delta functions, the integration over the
noncompact bosonic sector is simplified in the linyit>0
and we get the final result valid for arbitrary values of the
coupling a:
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fo(p1,P2)= Ve exp —D1p;—Dopo—B) single dot. This quite remarkable result means that putting a
weakly penetrable wall in a quantum billiard yields correla-
tions of the wave functions across the wall, although without

-1
sz Di(it @) A+ Bi(gi+ @) the wall they would be absent. Of course, making the wall
5 less and less penetrable reduces correlations due to the pref-
+Ci(gi+a)’]. (120 actor Ja in Eq. (14), but this decay is slow.

The form of the functiorf,(p;,p,), EQ. (14), is surpris-

In all the expressions# k and both indices can take values 1 ingly universal with only one sample specific parameter

and 2. We have defined for compact notatopr 2D p; , B

- describing the tunneling. It is natural to assume that such
=V(q:* a)(qz2+ a) and universality follows from some general physical principles.
A;=3D;D,m+(3D2+D?)n, Indeed, the correlations between the wave functions of the

chaotic billiards are a consequence of the quantum-
mechanical hybridization of states. This hybridization is
most effective when the coupling between the billiards is
weak and when any two levels of different billiards are close
to each other.
sinha 1 Let us show that Eq(14) can be obtained in the limik

. n==sinha. <1,,,>1 from this picture. The derivation is not as gen-

2a 2 eral and we are able to reproduce Etg) for point contacts

only. Instead of Eq(8), we consider a tunneling point con-
tact atx; :

Bi=(D?m+3D;D,n)(1+ 58 1B,

Ci=Dn(1+38 *+387 87?2,

m=cosha—

Equation(12), although being exact, is rather complicated
and we discuss now its asymptotics. In the limit-0 cor-
responding to almost isolated quantum dots, the JDF van- oo 1 2
ishes for allp; ,p, excluding the case when eithgy or p, is Lap=toVV1Vad,™ (Xt) $s(X1)- (19
zero, where it diverges. The divergencies are present in the

terms proportional t~“ in C; and the terms proportional to The dimensionless coupling constant is naw|to|/A1A5.
B~2in B,. Then we find We assume that the main contribution comes from configu-

rations where two levels of the dots 1 and 2 are close to each
fo(P1,p2)=D326(p;)e P2P2+D28(p,)e PP, (13)  other and so we consider only two eigenstates with engtgy
in dot 1 and energy? in dot 2. Including the tunneling
The particle is localized either in dot 1, thep=0 andp; is  results in a hybridization of the states. Followifitg], we
distributed via Porter-Thomas, or vice versa. The faclys write the energies of the hybridized states in first order of
appear, because the dimensionless densfijebave been degenerate perturbation theory:
normalized with respect to the volume of the total system
and not of the corresponding single dot. ¢ 4 220t 2
In the opposite limita—o of strong coupling between €2 =€ = VE " (16
the dots, we can easily obtain from E@.2) the Porter-
Thomas distribution, Eq(2), for the total system with vol-
umeV.
So, in the limit of strongly coupled and isolated billiards
we obtain the Porter-Thomas distribution. In both cases
fluctuations of the amplitudes of the wave functions at dif-

whereé&, =1(£+£%) and¢_=3(&1— &2). The local densi-
ties| ¢ (x19)|? in dots 1,2 at the points; andx, near the
contact can now be expressed in terms of the eigenfunctions
d(x;) and ¢?(x,) of the isolated dots:

ferent points are Gaussian and not correlated. But what hap- | (x)[P=[1+ A:] o (x0) %,
pens if the coupling constant is finite although small? Can a7
one have for suclr correlations between the wave functions [ (x)|?=[1+ A7 d2(xp)|?,
at different points within one dot or, maybe, correlations
) A B -
between different dots~ where A= =|ty5] 2(£. 7 VE +[t112)2.

The answer to this question can be found taking in Eq.

(12) the limit a<1 andp,.p,> a, which gives In order to calculate the functiof,(p;,p,), the local

densities| ¢ (X1 9)|% Egs.(16) and (17), should be substi-
tuted into Eq.(1) and the latter averaged over disorder. In-

fo(py,po)~ \/E(DlDZ)S’Zex;{— (Jup+Vu,)?] stead of doing so, we replace the averaging over the disorder
8 by an averaging over the level mismateh and the densities

1 pi=Vi|¢'(x)|? in all points. Assuming that the densities in
X[ 3(u; Y2+ u, Y3 + 5+ u1u2> the isolated dots are not correlated, being Porter-Thomas dis-
tributed, and the level mismatch distribution being given by
a functions:
X(UI3/2+ u2—3/2) ) (14)
A~ Is(é_IA)dE_, (18

whereu;=D;p;. We see that the exponential cannot be fac-
torized as in the case of the ordinary Porter-Thomas distriwe can perform the averaging for the functibép(p;,p,).
bution, which demonstrates correlations that are absent in ldow Eq. (1) becomes
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f2(p11p2) 12

1 wf A Ve

X 8(p;—D; [1+.A4:] 1qs)
X 8(p— D3 1+ AZ ] ay),

where A = (téqlqz)_l(f_ ¥ \/52_ +t02q1q2 2, FIG. 2. Conductance peak distributiét(g) for different cou-
Evaluation of the integrals is straightforward. First we plings «=0.01 (dotted ling, 0.1 (dashed ling and 1(solid line).
integrate overys,q, and then ove_ . In the limit p,,p,
>a,a<<1 the main contribution to the integral comes from
& ~ty, and we can replace the functis{é_/A) by the
value s(0). This shows that the result is independent of the

distribution of the mls.matcrf_. The remaining integrals o\ 5juate immediately the distribution functi®tg), whereg
can be performed easily and we reproduce @¢4) up to & g the dimensionless conductance. The result of the compu-
constant factor of order unity that cannot be found from suchation is represented in Fig. 2. It should be mentioned that
a consideration. Following this scheme, one can show thatq. (4) and, hence, the plot in Fig. 2 are valid for a symmet-
the result for the orthogonal ensemble differs by a factor ofic setup with both dots of the same volume and equal cou-
1/2 in the exponent and by a different preexponential. plings to the lead$generalizing to an asymmetric situation
Nevertheless, this simple evaluation cannot replace thean easily be done; due to the chaotic nature of the systems,
explicit derivation of the general E(L2) with the supersym- the distribution is robust against small asymmetries in the
metry technique, because EG2) is valid for an arbitrarye ~ volumes or the contacts to the leadBor small couplings
and py,. Even in the limita<1p;,>1, the evaluation «<1, the statistical properties of the peak conductance are
based on the two-level approximation was done for poincorrectly described by the two-level approximatid8]. In
contacts only. If we used instead of H45) the more gen- this region, small values of the conductance peaks are most
eral Eq.(8), we would have in the expression fiag,/? com- ~ Pprobable. For larger, the distribution is almost flat. _
binations of the typell;¢'* (x)¢'(x’) with |[X—X'|~\g. In conclusion, we derived the joint distribution function
However, the Porter-Thomas distribution is not applicabledf the amplitudes of wave functions for coupled chaotic sys-

for describing wave functions at different points separated byems in the unitary ensemble. We have discovered universal
atomnic distances. correlations that are absent in a single chaotic system and

In contrast, Eq(12) does not depend on the structure of phresented siimple pk_})r/]sical arlgumben_ts %xplainli)ng thellorigiln ?f
' : these correlations. The results obtained can be applicable for
the tunnel contact and contains as the only paramet&¥e e .
have, therefore, identified universal statistics of hybridizeddescrlblng a large class of coupled chaotic systems.
levels that is ind_ependent of micr(_)scopic details and foIIo_vvs A.T. wants to thank A. Altland, I. L. Aleiner, and F. W. J.
only from the existence of a coupling between two otherwiseHekking for useful discussions. This research was supported

As a natural application of the general formula, EtR),
let us calculate the distribution function for the peaks of the
conductance in a double-dot structure in the regime of Cou-
lomb blockade. Substituting Eq12) into Eqg. (4), we can

statistically independent systems. by the SFB 237 of the DFG.
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