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Statistics of wave functions in coupled chaotic systems
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Using the supersymmetry technique, we calculate the joint distribution of local densities of electron wave
functions in two coupled disordered or chaotic quantum billiards. We find spatial correlations that are absent in
a single chaotic system. Our exact result can be interpreted for small coupling in terms of the hybridization of
eigenstates of the isolated billiards. We show that the presented picture is universal, independent of micro-
scopic details of the coupling.

PACS number~s!: 05.45.Mt, 73.23.2b, 73.20.Dx
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In disordered or chaotic systems, the dynamics is in g
eral too complex to find exact eigenstates for a given dis
der or boundary configuration. Therefore, one is intereste
statistical properties of physical quantities like wave fun
tions, energy levels, etc. The complete information ab
these quantities can be extracted from distribution functi
that can be calculated either numerically or analytica
Various methods of studying the statistics have been de
oped recently and this offers the possibility to achieve a g
understanding of many disordered and ballistic chaotic s
tems~for a recent review see, e.g.,@1–5#!.

Now it is well established that under very general con
tions the statistics of chaotic systems is universal and w
described by random matrix theory~RMT! or the zero-
dimensional version of the supermatrixs model. For the
distribution function of the amplitudes of wave function
one obtains within this approximation the famous Port
Thomas distribution@6#, which is simply a Gaussian distri
bution of the amplitudes. Then, fluctuations of the wa
functions at different points are statistically independent.

In this paper, we present results from studying statist
properties of wave functions of two coupled chaotic syste
To be more specific, we consider two quantum chaotic
liards coupled in such a way that electrons~or electromag-
netic waves! can penetrate from one billiard into the othe
Studying such types of models is definitely interesting,
cause they can be relevant for double quantum dot syst
recently fabricated on the basis of a two-dimensional e
tron gas and investigated experimentally@7#. One can also
imagine that in the near future, microwave experiments
double billiards will be performed. However, the importan
of studying coupled chaotic systems is much more gen
and results obtained can be relevant, e.g., for system
weakly coupled complex atoms and molecules. To the b
of our knowledge, neither numerical nor analytical resu
from a study of wave functions of coupled chaotic syste
exist in the literature.

Wave functions are the most interesting objects
coupled systems, because even at very small coupling
can drastically change if any two levels of the correspond
isolated systems are close to each other. Statistics of
hybridized wave functions can be quite unusual, but, at
same time, possess interesting universal features.
PRE 621063-651X/2000/62~2!/2042~4!/$15.00
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The probability for the local densityVufa(x)u2 of a state
with wave functionfa(x) and energyea as well as its spa-
tial correlations can be described by the joint distributi
function ~JDF! f 2(p1 ,p2), defined as

f 2~p1 ,p2!5K D(
a

d(e2ea) )
i 51,2

d~pi2Vufa~xi !u2!L ,

~1!

where the bracketŝ •••& denote disorder averaging,D
5(nV)21 is the mean level spacing,V is the volume of the
total system, andn is the average density of states. The fun
tion f 2(p1 ,p2) is the probability that the local densities
energye are equal top1 and p2 at pointsx1 andx2, corre-
spondingly.

If p1 andp2 are not very large, the statistics of the wa
functions is universal and does not depend on whether
chaotic motion is due to disorder or a nonintegrable shap
the billiard. The direct calculation using the supersymme
technique or RMT gives, for single billiards in the unita
case:

f 2~p1 ,p2!5exp~2p1!exp~2p2!, ~2!

which is just the Porter-Thomas distribution@6#. Proper for-
mulas can be written for the other ensembles but we conc
trate here on studying a chaotic system with broken ti
reversal symmetry. This case is most simple for calculati
but the interesting effects obtained below are general.
unitary ensemble is easily realized in quantum dots by
plying a magnetic field. As concerns microwave cavitie
time-reversal invariance can be broken by a special prep
tion of the cavity walls@8#.

The function f 2(p1 ,p2), Eq. ~1!, characterizes correla
tions of the amplitudes of the electromagnetic waves in
crowave experiments and can be measured directly@9#. At
the same time, this function determines the statistics of
conductance peak heightsGmax in quantum dots in the re
gime of Coulomb blockade. The conductanceGmax can be
expressed through the tunnel rates of the contacts to exte
leadsG i}uf(xi)u2 @10,11#:

Gmax}
e2

T

G1G2

G11G2
. ~3!
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Equation~3! is valid for G i!T!D, whereT is temperature
and D is the mean level spacing in a single dot. Then
have for the distribution functionP(g) of the dimensionless
conductanceg5T/(Ge2)Gmax:

P~g!5E dp1dp2dS g2
p1p2

p11p2
D f 2~p1 ,p2!. ~4!

The relevance of Eq.~2! for conductance fluctuations i
single dots has been confirmed in experiments@12#. Unfor-
tunately, conductance fluctuations were not studied in an
periment on double quantum dots@7#. In a recent theoretica
work @13#, the averaged resonance conductance and its
tuations have been considered for two coupled dots in
limit of weak coupling based on the assumption that wa
functions of the corresponding isolated dots are Por
Thomas distributed even near the point contact. In contr
we present a general microscopic derivation of the funct
f 2(p1 ,p2), Eq. ~1!, for two coupled quantum chaotic bil
liards for arbitrary coupling. We find universal correlatio
that do not exist in a single billiard.

The system we consider is represented in Fig. 1. T
HamiltonianH can be written as

H5H11H21HT , ~5!

whereH1 andH2 correspond to the isolated dots:

Hi5 (
a; i 51,2

ea
i ca

i†ca
i . ~6!

In Eq. ~6!, ea
i are the single particle energies of doti, andc†

and c are creation and annihilation operators. We want
emphasize that the billiards are not identical and can h
arbitrary shapes and configurations of disorder. The coup
between the billiards is described by a tunneling Hamilton
HT that can be written as

HT5(
a,b

tabca
1†cb

21c.c. ~7!

Assuming that the particles tunnel through a surfaceS be-
tween the two dots, the tunneling matrix elementtab takes
the form

tab5t0E
S
dd21xAV1V2fa

1* ~x!fb
2~x!. ~8!

In Eq. ~8! we integrate over the surfaceS,Vi is the volume of
dot i ,t0 is the tunneling rate per unit surface, andfa

i (x) is
the single particle wave function of statea at a pointx of the
tunnel contact in doti.

FIG. 1. Two quantum billiards are coupled along some exten
tunneling surfaceS.
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Starting with the Hamiltonian, Eqs.~5!–~8!, we perform
calculations using the supersymmetry technique@1#. Follow-
ing this method, the JDF can be written in a form given
an integral over supermatricesQ1 ,Q2 @14#:

f 2~p1 ,p2!5 lim
d→1
g→0

d

dd

d

4E0

1

dtdQ1dQ2

3dS p11
gtd

2D
Str~PabQ1! D

3dS p22
g~12t !d

2D
Str~P rbQ2! D C@Qi #

3exp~2F@Q# !. ~9!

The free energyF5F01FT contains the free partF0 for the
single dots:

F052
g

4 (
i 51,2

D i
21Str~LQi !, ~10!

and the termFT describing the coupling between them:

FT52
a

4
Str~Q1Q2!. ~11!

The functionC@Qi # in Eq. ~9! is

C@Qi #5Str@~Pa f2P r f !~D1Q11D2Q2!#,

D i5(nVi)
21 is the mean level spacing in doti ,Di5D/D i ,

andD215n(V11V2). The projectorsP i j select certain ele-
ments of the supermatricesQi ,L5diag$1,1,1,1,21,21,
21,21%, Str is the supertrace~for more details of the nota
tions see@1#!.

The parametera}lF
d21Sut0u2(D1D2)21 is the dimension-

less coupling constant, withlF being the Fermi wavelength
In FT we have kept only the term of lowest order ina. Other
terms of orderan are smaller by a factor;an(lF

d21/S)n21

and this corresponds to many-channel tunneling between
dots. Therefore, as long aslF

d21/S!1, we can consider no
only small couplings but alsoa>1. On the other hand, ne
glecting higher-order terms for point contacts is correct o
for a!1. Note, that in the limita→`, fluctuations of (Q1
2Q2) are suppressed and one comes to the model fo
single dot with volumeV5V11V2. The opposite limit,a
→0, can only be performed after takingg→0.

To perform the integration we use the standard parame
zation @1#. All manipulations are not very difficult for the
unitary ensemble. After a rotation ofQ2 only one set of
Grassmann variables remains in the exponent, which is c
venient for integrating out the Grassmann variables. Due
the presence of the delta functions, the integration over
noncompact bosonic sector is simplified in the limitg→0
and we get the final result valid for arbitrary values of t
couplinga:

d
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f 2~p1 ,p2!5Aa exp~2D1p12D2p22b!

3(
iÞk

Di~qk1a!21/2@Ai1Bi~qi1a!

1Ci~qi1a!2#. ~12!

In all the expressionsiÞk and both indices can take values
and 2. We have defined for compact notationqi52Dkpi ,b
5A(q11a)(q21a) and

Ai53D1D2m1~3Dk
21Di

2!n,

Bi5~Di
2m13D1D2n!~11b21!b21,

Ci5Di
2n~113b2113b22!b22,

m5cosha2
sinha

2a
, n5

1

2
sinha.

Equation~12!, although being exact, is rather complicat
and we discuss now its asymptotics. In the limita→0 cor-
responding to almost isolated quantum dots, the JDF v
ishes for allp1 ,p2 excluding the case when eitherp1 or p2 is
zero, where it diverges. The divergencies are present in
terms proportional tob24 in Ci and the terms proportional t
b22 in Bi . Then we find

f 2~p1 ,p2!5D2
2d~p1!e2D2p21D1

2d~p2!e2D1p1. ~13!

The particle is localized either in dot 1, thenp250 andp1 is
distributed via Porter-Thomas, or vice versa. The factorsDi
appear, because the dimensionless densitiespi have been
normalized with respect to the volume of the total syst
and not of the corresponding single dot.

In the opposite limita→` of strong coupling between
the dots, we can easily obtain from Eq.~12! the Porter-
Thomas distribution, Eq.~2!, for the total system with vol-
umeV.

So, in the limit of strongly coupled and isolated billiard
we obtain the Porter-Thomas distribution. In both cas
fluctuations of the amplitudes of the wave functions at d
ferent points are Gaussian and not correlated. But what h
pens if the coupling constanta is finite although small? Can
one have for sucha correlations between the wave functio
at different points within one dot or, maybe, correlatio
between different dots?

The answer to this question can be found taking in E
~12! the limit a!1 andp1 ,p2@a, which gives

f 2~p1 ,p2!'Aa

8
~D1D2!3/2exp@2~Au11Au2!2#

3F3~u1
21/21u2

21/2!1S 1

2
1Au1u2D

3~u1
23/21u2

23/2!G , ~14!

whereui5Dipi . We see that the exponential cannot be fa
torized as in the case of the ordinary Porter-Thomas dis
bution, which demonstrates correlations that are absent
n-

he

s,
-
p-

.

-
i-
a

single dot. This quite remarkable result means that puttin
weakly penetrable wall in a quantum billiard yields corre
tions of the wave functions across the wall, although witho
the wall they would be absent. Of course, making the w
less and less penetrable reduces correlations due to the
actorAa in Eq. ~14!, but this decay is slow.

The form of the functionf 2(p1 ,p2), Eq. ~14!, is surpris-
ingly universal with only one sample specific parametera
describing the tunneling. It is natural to assume that s
universality follows from some general physical principle
Indeed, the correlations between the wave functions of
chaotic billiards are a consequence of the quantu
mechanical hybridization of states. This hybridization
most effective when the coupling between the billiards
weak and when any two levels of different billiards are clo
to each other.

Let us show that Eq.~14! can be obtained in the limita
!1,p1,2@1 from this picture. The derivation is not as ge
eral and we are able to reproduce Eq.~14! for point contacts
only. Instead of Eq.~8!, we consider a tunneling point con
tact atxt :

tab5t0AV1V2fa
1* ~xt!fb

2~xt!. ~15!

The dimensionless coupling constant is nowa}ut0u2/D1D2.
We assume that the main contribution comes from confi
rations where two levels of the dots 1 and 2 are close to e
other and so we consider only two eigenstates with energj1

in dot 1 and energyj2 in dot 2. Including the tunneling
results in a hybridization of the states. Following@13#, we
write the energies of the hybridized states in first order
degenerate perturbation theory:

e65j16Aj2
2 1ut12u2, ~16!

wherej15 1
2 (j11j2) andj25 1

2 (j12j2). The local densi-
ties uf6(x1,2)u2 in dots 1,2 at the pointsx1 andx2 near the
contact can now be expressed in terms of the eigenfunct
f1(x1) andf2(x2) of the isolated dots:

uf6~x1!u25@11A7#21uf1~x1!u2,
~17!

uf6~x2!u25@11A 7
21#21uf2~x2!u2,

whereA75ut12u22(j27Aj2
2 1ut12u2)2.

In order to calculate the functionf 2(p1 ,p2), the local
densitiesuf6(x1,2)u2, Eqs. ~16! and ~17!, should be substi-
tuted into Eq.~1! and the latter averaged over disorder. I
stead of doing so, we replace the averaging over the diso
by an averaging over the level mismatchj2 and the densities
pi5Vi uf i(xi)u2 in all points. Assuming that the densities
the isolated dots are not correlated, being Porter-Thomas
tributed, and the level mismatch distribution being given
a functions:

D21s~j2 /D!dj2 , ~18!

we can perform the averaging for the functionf 2(p1 ,p2).
Now Eq. ~1! becomes
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f 2~p1 ,p2!

5
1

D (
6

E
0

`S )
i 51

4

dqie
2qi D E

2`

`

dj2s~j2 /D!

3d~p12D1
21@11A7#21q3!

3d~p22D2
21@11A 7

21#21q4!,

whereA75(t0
2q1q2)21(j27Aj2

2 1t0
2q1q2)2.

Evaluation of the integrals is straightforward. First w
integrate overq3 ,q4 and then overj2 . In the limit p1 ,p2
@a,a!1 the main contribution to the integral comes fro
j2;t0 and we can replace the functions(j2 /D) by the
values(0). This shows that the result is independent of t
distribution of the mismatchj2 . The remaining integrals
can be performed easily and we reproduce Eq.~14! up to a
constant factor of order unity that cannot be found from su
a consideration. Following this scheme, one can show
the result for the orthogonal ensemble differs by a factor
1/2 in the exponent and by a different preexponential.

Nevertheless, this simple evaluation cannot replace
explicit derivation of the general Eq.~12! with the supersym-
metry technique, because Eq.~12! is valid for an arbitrarya
and p1,2. Even in the limit a!1,p1,2@1, the evaluation
based on the two-level approximation was done for po
contacts only. If we used instead of Eq.~15! the more gen-
eral Eq.~8!, we would have in the expression forut12u2 com-
binations of the type) if

i* (x)f i(x8) with ux2x8u;lF .
However, the Porter-Thomas distribution is not applica
for describing wave functions at different points separated
atomic distances.

In contrast, Eq.~12! does not depend on the structure
the tunnel contact and contains as the only parametera. We
have, therefore, identified universal statistics of hybridiz
levels that is independent of microscopic details and follo
only from the existence of a coupling between two otherw
statistically independent systems.
tt.
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As a natural application of the general formula, Eq.~12!,
let us calculate the distribution function for the peaks of t
conductance in a double-dot structure in the regime of C
lomb blockade. Substituting Eq.~12! into Eq. ~4!, we can
evaluate immediately the distribution functionP(g), whereg
is the dimensionless conductance. The result of the com
tation is represented in Fig. 2. It should be mentioned t
Eq. ~4! and, hence, the plot in Fig. 2 are valid for a symm
ric setup with both dots of the same volume and equal c
plings to the leads~generalizing to an asymmetric situatio
can easily be done; due to the chaotic nature of the syste
the distribution is robust against small asymmetries in
volumes or the contacts to the leads!. For small couplings
a!1, the statistical properties of the peak conductance
correctly described by the two-level approximation@13#. In
this region, small values of the conductance peaks are m
probable. For largea, the distribution is almost flat.

In conclusion, we derived the joint distribution functio
of the amplitudes of wave functions for coupled chaotic s
tems in the unitary ensemble. We have discovered unive
correlations that are absent in a single chaotic system
presented simple physical arguments explaining the origin
these correlations. The results obtained can be applicable
describing a large class of coupled chaotic systems.

A.T. wants to thank A. Altland, I. L. Aleiner, and F. W. J
Hekking for useful discussions. This research was suppo
by the SFB 237 of the DFG.

FIG. 2. Conductance peak distributionP(g) for different cou-
plings a50.01 ~dotted line!, 0.1 ~dashed line!, and 1 ~solid line!.
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